El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la matemática en general y se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos.
Dada una función f(x) de una variable real x y un intervalo [a,b] de la recta real, la integral
es igual al área de la región del plano xy limitada entre la gráfica de f, el eje x, y las líneas verticales x = a y x = b, donde son negativas las áreas por debajo del eje x. Dada una función f(x) de una variable real x y un intervalo [a,b] de la recta real, la integral
La palabra "integral" también puede hacer referencia a la noción de primitiva: una función F, cuya derivada es la función dada f. En este caso se denomina integral indefinida, mientras que las integrales tratadas en este artículo son las integrales definidas. Algunos autores mantienen una distinción entre integrales primitivas e indefinidas.
No hay comentarios:
Publicar un comentario